
The term ‘interaction’ has various meanings in the  
epidemiologic literature, depending on the context (BOX 1). 
The focus of this Review is on gene–environment (G×E) 
interaction, here defined as a joint effect of one or more 
genes with one or more environmental factors that can-
not be readily explained by their separate marginal effects. 
By convention in epidemiology, a multiplicative model 
is taken as the null hypothesis; that is, the relative risk of 
disease in individuals with both the genetic and envi-
ronmental risk factors is the product of the relative risks 
of each separately. Therefore, any joint effect that differs 
from this prediction is considered to be a form of inter-
action. Other null hypotheses, such as an additive model 
for the excess risk, would yield different interpretations  
about interaction (BOX 1).

G×E interactions are worth studying for many  
reasons1,2 (BOX 2), not least of which is the insights they 
could provide into biological pathways. If some of the 
unexplained heritability in genome-wide association studies  
(GWA studies) is due to interactions then — rather than 
discovering interactions per se — one goal might be to 
use interactions to discover novel genes that act synergis-
tically with other factors without having demonstrable 
marginal effects3. Conversely, one might wish to discover 
environmental hazards that affect only a subpopulation 
of genetically susceptible individuals. For example, 
G×E interactions might allow the effects of the compo-
nents of a complex mixture, such as air pollution, to be  
dissected4. Understanding the failure to replicate the 
findings of GWA studies is another goal, as it could 
provide insights into disease complexity by identifying 
sources of real heterogeneity5,6. Finally, taking account 

of G×E interactions in risk prediction models can have 
important implications for both public health and  
personalized medicine7.

Traditionally, G×E interactions were investigated 
using candidate-gene studies. This research often begins 
with an established association with an environmental 
factor and proceeds to explore genes in pathways that are 
known to metabolize them. Over time, candidate-gene 
studies have become more elaborate investigations of 
entire pathways, including all of the genes, exposures and 
cofactors that are thought to be involved in a particular 
mechanism. With the advent of GWA studies, a different 
philosophy has gained prominence, based on ‘agnostic’ 
searches with no prior hypotheses. Understandably, 
most reports have focused on genetic main effects, but 
they are now increasingly directed at gene–gene (G×G) 
interactions8. Although many GWA studies have not col-
lected data on environmental factors, some are based 
on epidemiologic cohort studies or case–control studies 
(TABLE 1) that have well-characterized exposure informa-
tion and could be scanned for novel G×E interactions. 
Such scans for G×G and G×E interactions have been 
viewed as agnostic. Recently, however, there has been an 
intriguing convergence of the two philosophies: external 
pathway knowledge has been used to inform the analysis 
of GWA data to better detect signals that do not achieve 
genome-wide significance9, and patterns of interaction 
effects have been mined from GWA data to discover 
novel pathways10.

In the current post-GWA era, the focus is on inte-
grating findings from the vast body of data that has 
been generated through large consortia. A key feature 
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Marginal effects
The effects of a specific risk 
factor (gene or exposure)  
in the population as a  
whole, averaging over all  
other variables.

Genome-wide association 
study
A scan of the entire genome for 
association with a disease or 
trait using a standard panel  
of ~500,000 to 1 million 
haplotype-tagging SNPs.
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Abstract | Despite the yield of recent genome-wide association (GWA) studies, the 
identified variants explain only a small proportion of the heritability of most complex 
diseases. This unexplained heritability could be partly due to gene–environment (G×E) 
interactions or more complex pathways involving multiple genes and exposures. This 
Review provides a tutorial on the available epidemiological designs and statistical analysis 
approaches for studying specific G×E interactions and choosing the most appropriate 
methods. I discuss the approaches that are being developed for studying entire pathways 
and available techniques for mining interactions in GWA data. I also explore methods for 
marrying hypothesis-driven pathway-based approaches with ‘agnostic’ GWA studies.
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Gene–environment-wide 
interaction study
A scan of the entire genome  
for interactions with various 
environmental exposures.

Ecologic-level study
An observational epidemiology 
study that relies on 
comparisons of aggregate 
disease rates across groups  
in relation to aggregate 
exposure information  
rather than comparisons 
between individuals.

of this next phase should be a renewed focus on G×E 
interactions, but this will require careful consideration 
of epidemiologic study design, exposure assessment and 
methods of analysis, with particular attention to harmo-
nization of these features across the consortia. Another 
key feature is the integration of GWA data with external 
biological knowledge from ‘omics’ databases.

I first discuss some of the challenges facing investiga-
tors studying environmental factors. next, I provide a 
tutorial for the various types of study designs and ana-
lytical methods for studying G×E interactions in differ-
ent contexts, ranging from specific interactions to more 
extensive biological pathways to GWA studies (‘gene–
environment-wide interaction studies’ (GEWI studies))11.  
I discuss various ways that external data can be exploited 
in these types of analyses. Finally, I discuss some emerging  
directions and needs for making further progress.

challenges to G×e studies
Whatever study design is used, the major challenges to 
the success of a G×E study — in addition to the usual 
challenges for genetic association studies that have 
been thoroughly discussed elsewhere — are exposure 
assessment, sample size and heterogeneity.

Exposure assessment. Many environmental factors are 
multidimensional; air pollution, for example, is a com-
plex mixture of gases and particles with differing bio-
logical effects. Most environmental agents have degrees 
of exposure intensity that usually vary over time. Even 
if an exposure is not time-dependent, the resulting 
disease risk is likely to be modified by temporal fac-
tors, such as age at exposure or duration of exposure12. 
Seldom are accurate measurements of exposure over a 
lifetime available on all participants in a large epide-
miologic study, but more detailed information may be 
obtainable on a stratified subsample to allow correction 
for measurement error13. Exposures may not even be 
measured on individuals, but assigned on the basis of 
ecologic-level studies or a prediction model. Two-phase 
case–control designs (BOX 3) that leverage readily avail-
able exposure surrogates to select individuals for more 
in-depth exposure assessment and/or genotyping might 
be used. Uncertainties in exposure assignments can be 
large and can lead to unpredictable biases, particularly 
if they differ with respect to disease, as well as induce 
spurious interactions9. Although methods of correction 
for exposure or genotype measurement errors are well 
established for main effects, they have seldom been 
applied to interaction analyses14,15. In general, how-
ever, interactions are less likely to be biased than main 
effects unless the measurement errors are differentially 
related to both exposure and genotype.

Sample size and power. Sample-size requirements for 
G×E studies can be enormous. A useful rule of thumb 
is that the detection of an interaction requires a sample 
size at least four times larger than that required for the 
detection of a main effect of comparable magnitude16. 
Sample sizes in the thousands of cases are typically 
needed for G×E analyses in candidate-gene studies, and 
tens of thousands are needed in GWA studies because 
of the more stringent significance levels required (see 
Supplementary information S1 (figure)). In addition to 
study design, the key determinants of power or sample-
size requirements are the prevalence of the exposure (or 
its distribution if continuous), the allele frequency, the 
mode of inheritance, the interaction odds ratio ORG×E (and 
to a lesser extent the odds ratios for the main effects), 
the significance level and the desired power. Several pro-
grams for sample size and power calculations are freely 
available, notably Quanto17 and POWER18. It is likely that 
at least some of the poor track record of replicating claims 
of G×E interactions is due to underpowered studies in 
the initial discovery or replication attempts19–21. This has 
led some to suggest that the search for interactions is not 
worthwhile, as genes involved in interactions are more 
likely to be detected through their marginal effects22.  
nevertheless, a range of interaction effect sizes can 

 Box 1 | types of interaction

statistical interaction
A departure from a pure main effects model — for example, additive or multiplicative 
effects for disease risk, or natural or logarithmic effects for continuous traits.

Quantitative interaction
A form of statistical interaction in which the effects of one factor go in the same 
direction at different levels of the other, but differ in magnitude. Lack of interaction 
on one scale necessarily implies interaction on other scales. For example, compared 
with non-carriers, carriers of rare deleterious mutations in ataxia telangiectasia 
mutated (ATM) have a more-than-multiplicative increased risk of second primary 
breast cancers following radiotherapy, although radiation risks are increased in both 
genotypes and carrier risks are increased in both exposure groups159.

Qualitative interaction
Forms of statistical interaction in which: the effects go in opposite directions (for 
example, exposure is deleterious in carriers and protective in non-carriers, and vice 
versa); there is an increased effect only in the presence of both the environmental 
factor and the susceptible genotype; the effect of genotype is present at only  
one level of the environment; or the effect of the environment is present in only one 
genotype. Such interactions do not depend upon the choice of scale. For example, 
in utero tobacco smoke exposure seems to have an effect on asthma and wheeze only in 
children with the glutathione S-transferase mu 1 (GSTM1)-null genotype, and vice 
versa160. Opposite effects of a defensin-β1 (DEFB1) haplotype on asthma were seen 
between women and girls or between girls and boys, which suggests an interaction 
with some aspect of the ‘internal environment’161.

Public health synergy
A disease burden that is attributable to exposure to two or more risk factors and  
that is greater than the sum of the excess risks from each factor alone. For example, 
the population burden of gastric cancer attributable to the combination of 
Helicobacter pylori infection and interleukin-1 susceptibility alleles is greater than 
the sum of their separate contributions162.

Biological interaction
An effect of one factor that depends upon the presence or absence of another163. For 
example, GST genes are inducible by oxidative stress caused by radicals and oxidants 
in air pollution, and myeloperoxidase levels are increased in the respiratory 
extrathelial lining fluid by ozone-induced inflammation52. This concept generally 
applies at the cellular or molecular level, but may have implications for statistical 
interactions at the whole-organism or population level.

Public health and biological interactions lead to an additive risk model as the 
natural null hypothesis164, although in epidemiology the multiplicative model is more 
commonly used. Various authors25,165–167 have offered classifications of different types 
of gene–environment interactions, including qualitative interactions (crossing, no 
effect of environment in those not genetically susceptible, no effect of genotype in 
the unexposed, and so on) and quantitative interactions.
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Interaction odds ratio
The ratio of odds ratios for  
the relationship of one factor 
(for example, a gene) with 
disease across the levels of 
another factor (for example,  
an environmental exposure);  
as such, it is a measure of 
departure from a multiplicative 
joint effect.

be detected in a GWA study by testing for interaction  
or a genetic effect in an environmental subgroup, 
even when the marginal effects are not detectable 
(Supplementary information S1 (figure)). despite 
claims that interaction in the absence of main effects is 
a ‘ubiquitous’ phenomenon in nature23,24, most exam-
ples are found at the molecular or cellular level, and 
there are few convincing examples in human epide-
miology. nevertheless, there are examples of genetic 
effects that are apparent only in groups with the rel-
evant environmental exposure, and of environmen-
tal factors that affect only those with the susceptible  
genotype (BOX 1).

Heterogeneity and replication. When comparing studies 
that use different exposure-assessment tools, that have 
different distributions or characteristics of exposure 
(for example, different sizes or chemical constituents of  
particulate air pollution across regions) or that feature 
different confounders (for example, co-pollutants or ethnic  
distributions with differing genetic background risk), the 
potential for true heterogeneity is magnified. If explana-
tions can be found for such heterogeneity5, there is an 
opportunity for insights about the complexity of the dis-
ease, but spurious inconsistency due to methodological  
or data-quality differences will just add confusion.

G×e interactions with candidate genes
Any of the standard epidemiological designs for studying  
the main effects of genes or environmental factors — 
cohort designs, case–control designs or hybrid designs, 
such as nested case–control designs or case–cohort 
designs25–27 (TABLE 1) — can also be applied to the study 
of G×E interactions. The issues for choosing between the 
designs are similar for main effects and interactions, and 
include the control of confounding and other biases, the 
temporal sequence of exposure and disease, data qual-
ity, the ability to examine multiple end points, and the 
efficiency of detecting rare diseases or rare risk factors 
(TABLE 1). For simplicity, I treat G in this section as a sin-
gle functional polymorphism, but it could represent a 
risk-associated haplotype, several causal variants within 
a gene, or a risk index composed of multiple rare vari-
ants. The same analysis techniques could be applied in 
any case (for example, multiple logistic regression) and 
the design considerations would be similar. The follow-
ing non-traditional designs offer particular advantages 
for studying interactions.

Case-only design. One of the earliest non-traditional 
designs was the case-only design (or ‘case–case’ design)28 
(TABLE 1), which can only be used for testing interactions, 
not main effects. This design relies on an assumption 
of gene–environment independence in the source popu-
lation to avoid estimating this association among con-
trols, thereby increasing power for the test of interaction. 
Although this assumption would be reasonable for most 
exogenous exposures, such as air pollution, the case-only 
design will yield a biased estimate of ORG×E and an ele-
vated type I error rate if the independence assumption 
is violated. For example, genes involved in behavioural 
traits, such as addiction, might be expected to produce a 
causal association between G and E (a G–E association) 
in the general population, as is sometimes seen for the 
environmental factor tobacco smoking29,30. Other G–E 
associations could arise indirectly, for instance between 
oral contraceptives and BRCA1 through the effect of 
the gene on family history — a sister of an affected case 
might choose to take oral contraceptives to lessen her 
risk of ovarian cancer31.

Broeks et al.32 used a case-only design to assess the 
interaction between radiotherapy (RT) for the treatment 
of an individual’s first incidence of breast cancer and 
mutations in four dnA damage repair genes (BRCA1,  
BRCA2, CHEK2 and ataxia telangiectasia mutated (ATM))  

 Box 2 | current and potential uses of gene–environment interactions

•	Understanding biological mechanisms and pathways. For example, the interaction 
of tobacco smoking, hair dyes and various occupational exposures with the 
N-acetyltransferase 2 (NAT2) gene in bladder cancer suggests a role for aryl 
amines58. Various pathway-based analyses of significant hits from genome-wide 
association (GWA) studies have yielded insights into underlying mechanisms of 
disease, but to date no analyses seem to have exploited gene–environment 
interactions in a gene–environment-wide interaction study.

•	Identifying novel genes acting through interactions that are manifested by their 
marginal effects. In GWA studies in particular, these interactions could provide an 
explanation for some of the ‘missing heritability’. GWA scans currently underway 
include those searching for genes that confer susceptibility to air pollution in 
childhood asthma or to ionizing radiation in second breast cancers, and for dietary 
factors that confer susceptibility to colorectal cancer.

•	Understanding heterogeneity in results across studies caused by differences in 
exposure distributions. A meta-analysis of NAT2 and glutathione S-transferase mu 1 
(GSTM1) associations in bladder cancer168 revealed some between-study 
heterogeneity in main effects, but found that the smoking × NAT2 interaction was 
robust and that there was no GSTM1 × smoking interaction.

•	Identifying environmental factors that affect only a subgroup of genetically 
susceptible individuals. For example, maternal smoking during pregnancy seems  
to cause asthma only in children with the GSTM1 null genotype160.

•	Dissecting the effects of complex mixtures (such as air pollution) into components 
that are metabolized by different genes. For example, the interaction between red 
meat consumption and NAT2 in colorectal cancer suggests that the heterocyclic 
amines generated during cooking are the responsible agents4.

•	Establishing environmental regulation aimed at setting standards to protect  
the most vulnerable individuals. Although the US Environmental Protection 
Agency currently takes identifiable susceptible population subgroups (for 
example, children, the elderly and asthmatics) into account when setting 
standards, it has so far limited the use of genetic data to understanding 
mechanisms169; the use of specific genotypes in regulation raises difficult practical 
and ethical concerns. However, there are some voluntary employer-sponsored 
screening programs for human leukocyte antigen DP (HLA-DP) sensitivity  
to beryllium170.

•	Predicting individual risk of disease or prognosis and potential changes in risk in 
relation to modifiable environmental factors. For example, the optimal 
mammographic screening interval for women with a strong family history of breast 
cancer may differ depending on whether they carry a BRCA1 or BRCA2 mutation171. 
The potentially protective or deleterious effects of folate supplementation on 
colorectal cancer risk could depend upon genes involved in its metabolism, such as 
methylenetetrahydrofolate reductase (MTHFR)172.

•	Choosing the best treatment for an individual to maximize response or minimize 
side effects based on genetic predisposition. For example, a single SNP in solute 
carrier organic anion transporter family, member 1B1 (SLCO1B1) identified in a 
GWA study seems to dramatically affect the risk of cardiomyopathy following 
treatment with statins70.
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Table 1 | study designs for gene–environment interactions

Design Approach Advantages Disadvantages settings examples

Basic epidemiologic designs

Cohort Comparison of 
incidence of new cases 
across groups defined 
by E and G

Freedom from most biases; 
clear temporal sequence of 
cause and effect 

Large cohorts and/or long 
follow-up needed to obtain 
sufficient numbers of cases; 
possible biased losses 
to follow-up; changes 
in exposure may require 
recurring observation

Common Ds or 
multiple end points; 
commonly used  
in biobanks

ITGB3 × fibrinogen in 
platelet aggregation 
in Framingham 
cohort154

Case–control Comparison of 
prevalence of E and G 
between cases  
and controls

Modest sample sizes 
needed for rare Ds; can 
individually match on 
confounders

Recall bias for E;  
selection bias, particularly 
for control group

Rare Ds with 
common E and G 
risk factors

CYP1A2, NAT2, 
smoking and red meat 
in colorectal cancer57

Case-only Test of G–E association 
among cases, assuming 
G–E independence in 
the source population

Greater power than 
case–control or cohort

Bias if G–E assumption  
is incorrect

G×E studies 
in which G–E 
independence can 
be assumed

Radiotherapy × DNA 
repair genes in second 
breast cancers32

Randomized 
trial

Cohort study with 
random assignment  
of E across individuals

Experimental control of 
confounders

Prevention trials for D 
incidence can require very 
large sample sizes

Experimental 
confirmation for 
chronic effects

Albuteral and B2AR  
in asthmatics126

Crossover 
trial

Exposes each individual 
to the different Es in 
random order

Experimental control 
of confounders; 
within-individual 
comparisons

Small sample sizes; only 
low doses possible if E is 
potentially harmful

Experimental 
confirmation for 
acute effects

Immunologic marker 
changes following 
allergen and diesel 
exhaust particle 
exposure124

Hybrid designs

Nested 
case–control

Selection of matched 
controls for each case 
from cohort members 
who are still D-free

The freedom from bias of 
a cohort design combined 
with the efficiency of a 
case–control design; simple 
analysis

Each case group requires a 
separate control series

Studies within 
cohorts requiring 
additional data 
collection

Antioxidants × MPO in 
breast cancer155

Case–cohort Unmatched comparison 
of cases from a cohort 
with a random sample of 
the cohort

Same advantages as nested 
case–control; the same 
control group can be used 
for multiple case series

Complex analysis Studies within 
cohorts with 
stored baseline 
biospecimens 

APOE and smoking for 
CHD in Framingham 
offspring cohort156

Two-phase 
case–control 

Stratified sampling on 
D, E and G for additional 
measurements (for 
example, biomarkers)

High statistical 
efficiency for subsample 
measurements

Complex analysis Substudies for 
which outcome and 
predictor data are 
already available

GST genes and 
tobacco smoking  
in CHD47

Counter- 
matching

Matched selection 
of controls who are 
discordant for a 
surrogate for E

Permits individual 
matching; highly efficient 
for E main effect and G×E 
interactions

Complex control selection Substudies in which 
a matched design  
is needed

Radiotherapy × DNA 
repair genes in second 
breast cancers49

Joint 
case-only 
and 
case–control

Bayesian compromise 
between case-only 
and case–control 
comparisons

Power advantage of 
case-only combined with 
robustness of case–control 

Some bias when G–E 
association is moderate

G×E studies 
for which G–E 
independence is 
uncertain

GSM1, NAT2, smoking 
and diet in colorectal 
cancer34

Family-based designs

Case–sibling 
(or –cousin)

Case–control 
comparison of E and 
G using unaffected 
relatives as controls

More powerful than 
case–control for G×E; 
immune to population 
stratification bias

Discordant sibships 
difficult to enroll; 
overmatching for G  
main effects

Populations 
with potential 
substructure

GSTM1 × air pollution 
in childhood asthma17

Case–parent 
triad

Comparison of Gs for 
cases with Gs that could 
have been inherited 
from parents, stratified 
by case’s E

More powerful than 
case–control for G×E; 
immune to population 
stratification bias for G 
main effects

Difficult to enroll complete 
triads; possible bias in G×E 
if G and E are associated 
within parental  
mating types

Substructured 
populations, 
particularly for Ds  
of childhood 

TGFA × maternal 
smoking, alcohol  
and vitamins in  
cleft palate157

Twin studies Comparison of D 
concordance between 
MZ and DZ pairs in 
different environments

No genetic data required; 
can be extended to include 
half-siblings, twins reared 
together or apart, or to 
compare discordant pairs 
on measured G and E

Used mainly to identify 
interactions with 
unmeasured genes; 
assumption of similar E 
between MZ and DZ pairs

Exploratory studies 
of potential for 
G×E before specific 
genes have been 
identified

Concordance 
of insulin levels 
in relation to 
non-genetic variation 
in obesity158 
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Confounder
A spurious association 
between a risk factor (a gene, 
exposure or interaction) and 
disease induced by the joint 
associations of some other 
variable with the risk factor  
and the disease that are 
independent of the risk  
factor. Confounding can also 
distort the magnitude of the 
association of a true risk factor 
with disease or mask it.

Gene–environment 
independence
The independent distribution 
of genotype and environment 
in the source population.

Empirical Bayes
A technique for estimating  
the effects of each component 
of a large ensemble of related 
variables by assuming the 
ensemble has some common 
distribution and estimating the 
parameters of that distribution. 
Empirical Bayes estimators 
typically have better prediction 
error than estimating each  
one separately.

Bayes model averaging
A technique for accounting for 
uncertainty about the correct 
model form (for example, the 
selection of variables to include 
in a multiple regression model) 
by averaging the effects of 
each possible variable over the 
set of all plausible models.

on the subsequent risk of contralateral breast cancer 
(CBC). Among RT+ cases, there was a 2.2-fold higher 
prevalence of germline mutations in one or more of 
these genes than among RT − cases. Here it seems 
unlikely that genotypes would have affected the choice 
of treatment, except perhaps indirectly through tumour 
characteristics or stage at diagnosis (factors that could be  
adjusted for).

It is tempting to begin by testing for G–E association 
in controls and then decide whether to use the case-only 
test (for greater power if there is no G–E association) 
or the case–control test (for greater validity if there 
is). However, this naive procedure leads to biased tests 
and estimates because it fails to take proper account of 
this two-step inference procedure33. More appropriate 
empirical Bayes34 or Bayes model averaging35 approaches 
have been developed that essentially provide weighted 
averages of the case-only and case–control estimators, 
yielding an acceptable trade-off between bias and effi-
ciency. For example, Mukherjee et al.34 re-analysed 
data on glutathione S-transferase mu 1 (GSTM1) and 
N-acetyltransferase 2 (NAT2) genotypes in relation to 
smoking and dietary factors. They found a strong asso-
ciation between NAT2 and smoking, so their empirical 
Bayes estimate of the interaction between the two was 
closer to the case–control estimate than to the case-only 
one, which was in the opposite direction. However, there 
was no association between GSTM1 and fruit consump-
tion, so the empirical Bayes estimate of that interaction 
was similar to both the case–control and case-only esti-
mates, but took advantage of the smaller standard error 
of the latter.

Family-based association tests. Family-based association  
tests — case–parent triad designs36, case–sibling 
designs37, designs using extended pedigrees38, and 
modified segregation analyses39 (TABLE 1) — are appealing 
because they avoid bias from population stratification, but 
are generally less powerful for testing main effects than 

case–control studies using unrelated controls. However, 
they can be more powerful for testing G×E interactions 
if relatives’ exposures are not too highly correlated37. 
Population stratification can bias G×E interactions only 
if the substructure is related to the gene and the environ-
mental factor differentially — that is, there are different 
ancestry–genotype associations in exposed and unex-
posed individuals — which seems unlikely. The case–
parent triad design requires exposure information only 
on the cases (although it does require surviving parents 
for genotyping, making it more suitable for early-onset 
diseases) and entails a comparison of genetic relative 
risks between exposed and unexposed cases. The dis-
cordant sibship design requires exposure information 
on all cases and controls and uses standard conditional 
logistic regression tests of interaction. Twin studies40 
(TABLE 1) and joint segregation and linkage analysis41–44 can 
also be used for testing the existence of G×E interactions 
with unknown genes or specific regions25.

Two-phase case–control design. Two other novel designs 
use different ways of selecting controls to improve the 
power for detecting either main effects or interactions. 
The two-phase case–control design45 is useful when a 
surrogate for exposure is readily available but additional 
expensive data collection is required to retrieve data on 
exact doses, confounders or modifiers46. (note that the 
kinds of two-phase sampling designs described here are 
fundamentally different from the two-stage genotyping 
designs for GWA studies described below and in BOX 3.)  
These designs entail independent subsampling on the 
basis of disease status and of the exposure surrogate 
variable from a first-phase case–control or cohort study. 
data from both phases are combined in the analysis, 
with appropriate allowance for the biased sampling in 
phase two. The optimal design entails over-represent-
ing the rarer cells, typically the exposed cases. Although 
most applications have focused on the use of the two-
phase case–control design for improving exposure 

Table 1 (cont.) | study designs for gene–environment interactions

Design Approach Advantages Disadvantages settings examples

GWA designs

Two-stage 
genotyping

Use of high-density panel on part 
of a case–control sample to select a 
subset of SNPs with suggestive Gs or 
G×E interaction for testing; the SNPs 
are tested using a custom panel in an 
independent sample, with joint analysis 
of both samples

Highly cost efficient Only part of sample has GWA 
genotypes

GWA studies for 
which complete 
SNP data on  
all subjects is  
not needed

None 
identified

Two-step 
interaction 
analysis

Preliminary filtering of a GWA scan 
for G–E association in combined 
case–control sample, followed by G×E 
testing of a selected subset

Much more powerful 
for G×E or G×G 
interactions than a 
single-step analysis

Can miss some interactions GWA studies with 
complete SNP 
data and focus  
on G×E

G × in utero 
tobacco in 
childhood 
asthma

DNA pooling Comparison of allelic density in pools 
of cases and controls stratified by E, 
followed by individual genotyping

Highly cost efficient Technical difficulties in forming 
pools and assaying allelic 
density; limited possibilities for 
testing interactions

GWA studies for 
which an initial 
scan is severely 
limited by cost

None 
identified

APOE, apolipoprotein E; B2AR, adrenergic β2 receptor (also known as ADRB2); CHD, coronary heart disease; CYP1A2, cytochrome P450 family 1, subfamily A, 
polypeptide 2; D, disease; DZ, dizygotic; E, environment; G, gene; G×E interaction, gene–environment interaction; G–E association, causal association between 
gene and environment; GST, glutathione S-transferase; GSTM1, glutathione S-transferase mu 1; GWA, genome-wide association; ITGB3, integrin-β3;  
MPO, myeloperoxidase; MZ, monozygotic; NAT2, N-acetyltransferase 2; TGFA, transforming growth factor-α.
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Modified segregation 
analysis
This analysis applies 
likelihood-based methods to 
data from a pedigree in which 
one or more members have 
genotypes available at a major 
gene. It derives the genotypes 
of untyped individuals by 
summing their conditional 
genotype probabilities using 
the genotypes available.

Population stratification
The phenomenon of an 
apparently homogeneous 
population that is actually 
composed of subgroups  
of individuals with distinct 
ancestral origins and differing 
allele frequencies at many  
loci. This leads to bias in the 
assessment of the significance 
of associations of a trait with 
particular loci.

characterization for main effects or for better control of 
confounding, it can also be highly efficient for studying 
interaction effects. For example, li et al.47 used a two-
phase design nested within the Atherosclerosis Risk in 
Communities (ARIC) study to study the interaction 
among GSTM1 or glutathione S-transferase theta 1  
(GSTT1), cigarette smoking and the risk of coronary 
heart disease. Their sampling scheme was not fully effi-
cient for addressing this particular question because it 
stratified only on intima media thickness, not smok-
ing, and only for the controls, and it did not exploit the 
information from the original cohort in the analysis. 
Re-analyses of other data from the ARIC study48 showed 
the considerable improvement in efficiency that can be 
obtained by using the full cohort information.

Counter-matching. Counter-matching (TABLE 1) is 
essentially a matched variant of the two-phase design. 
Here, one or more controls are selected for each case on  
the basis of exposure so that each matched set contains the  
same number of exposed individuals. Another study of 
CBC in relation to RT and dnA damage repair genes49 
counter-matched each CBC case to two controls with 
unilateral breast cancer, such that each matched set 

contained two RT+ subjects. Radiation doses to each 
quadrant of the contralateral breast were then estimated 
and dnA was obtained for genotyping candidate dnA 
repair genes and for a GWA scan. langholz50 has shown 
the considerable gains in power that can be obtained, 
both for main effects and for interactions. In particu-
lar, for G×E interactions Andrieu et al.51 showed that a 
1:1:1:1 design counter-matched on surrogates for both 
exposure and genotype was more powerful than con-
ventional 1:3 nested case–control designs, or 1:3 or 2:2 
designs counter-matched on just one of these factors.

approaches for candidate pathway analyses
So far I have considered interactions between one gene 
and one environmental factor, but most candidate  
gene studies are based on a conceptual model for one 
or more candidate pathways. For example, most of the 
genetic studies being done for susceptibility to the effects 
of air pollution on children’s asthma and lung growth in 
the Southern California Children’s Health Study have been 
motivated by a theoretical framework involving oxidative 
stress, inflammation and modifiers, such as antioxidant 
intake52. Typically, such hypotheses lead to the selection 
of a set of candidate genes to be studied together. How 
then can these data be analysed in combination to learn  
about the overall effect of the postulated pathway(s)?

Multifactor dimension reduction. Many exploratory 
methods have been developed for multivariate analysis  
of high-dimensional data, ranging from standard  
multiple regression techniques to various machine learning  
or pattern recognition methods8,53,54. Perhaps the most 
popular of these methods for studying interactions is 
multifactor dimension reduction (MdR)8,55,56, which I 
applied in BOX 4 to data on a reported four-way inter-
action among two exposures (smoking and red meat) 
and two genes (cytochrome P450 family 1, subfamily A,  
polypeptide 2 (CYP1A2) and NAT2) in colorectal  
cancer57. Although this study is widely quoted as one of 
the few examples of a higher-order interaction, this analy-
sis makes clear that the four-way interaction is not inter-
nally reproducible by cross-validation. In this instance, 
MdR is more useful for putting a high-dimensional  
interaction into context than for discovering one, and 
emphasizes that if two-way interactions require large 
sample sizes, higher-order interactions require even  
larger sample sizes. nevertheless, the interaction is bio-
logically plausible (similar replicated interactions among 
NAT2, GSTM1, tobacco smoking and occupational 
exposures have been reported for bladder cancer58)  
and is worth studying further using techniques that  
leverage known pathways.

Gene-set-enrichment analysis and hierarchical models. 
As candidate pathway studies are hypothesis-driven, it 
seems appropriate to carry this reasoning through to 
the analysis59,60. Two approaches that attempt to lever-
age external information about biological pathways 
are summarized below and in BOX 5. These methods, 
though promising, have not been widely applied to  
candidate-gene studies so far.

 Box 3 | designs for genome-wide interaction scans

Although any of the designs for studying gene–environment (G×E) interactions with 
single genes could be used for genome-wide association (GWA) studies that include 
interactions (gene–environment-wide interaction studies), the following five have the 
potential to greatly improve power or cost-efficiency.

two-phase case–control designs
These combine GWA SNP data, stratified jointly by disease and exposure, from a 
subsample of a large epidemiologic case–control or cohort study with the data on 
exposure (and possibly established genes) from the parent study, and adjustments are 
made to account for the biased sampling. For example, Li et al.47 compared coronary 
heart disease cases with a stratified subcohort based on age, gender and carotid 
intima thickness and found an interaction between smoking and the glutathione 
S-transferase theta 1 (GSTT1)-null genotype.

two-stage genotyping designs
These designs use high-density genotyping chip or array technology to assay hundreds 
of thousands or over a million SNPs from a random sample of cases and controls. The 
most promising SNPs are then selected, based on their main effects and interactions, 
for custom genotyping in the remainder of the sample. The final analysis combines the 
information on the selected SNPs and environmental factors from both samples.

two-step analyses
In two-step analyses the multiple comparisons penalty for looking at all possible 
interactions within a sample with complete GWA SNP data is reduced by restricting 
the final analysis to only a subset of the possible interactions based on a preliminary 
filtering step. Two approaches to this filtering have been suggested. The first 
approach involves restricting comparisons to the subset of gene and environment 
variables that show marginal effects at a liberal significance level95. The second 
approach involves testing all possible causal associations between G and E (G−E 
associations) in the combined case–control sample and then testing only those 
combinations for G×E interaction, using a standard case–control comparison99 (FIG. 1).

Joint case-only and case–control designs
In these designs the empirical Bayes method or Bayes model averaging is applied to  
all possible interactions in combined case-only and case–control tests.

DnA pooling
Here, pools of DNA from cases and controls, stratified by exposure, are tested for 
differences in allele frequency, followed by individual genotyping in the same or 
new samples.
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Joint segregation and 
linkage analysis
The use of family studies to 
estimate the parameters  
of a penetrance model. The 
parameters could include 
interactions between the 
unobserved major gene, which 
is linked to a marker, and 
environmental factors.

Multiple regression
A standard statistical 
technique for relating a single 
outcome variable to multiple 
explanatory variables, either all 
at once or using some variable 
selection method, such as 
stepwise forward selection  
or backward elimination.

Machine learning
Any of many data analysis 
techniques for mining large 
data sets derived from the 
computer science field.  
The techniques are not 
specifically based on 
mathematical statistics theory.

Pattern recognition
Any technique from 
exploratory data analysis  
or machine learning for 
discovering non-random 
patterns in large data sets.

First-level coefficients
In a hierarchical model,  
the regression coefficients  
(for example, log relative  
risks for each variable) for  
the subject-level data on the 
association between risk 
factors and disease. Unlike a 
non-hierarchical model, these 
coefficients are treated as 
random variables with 
distributions described in  
the higher level(s) of the  
model rather than as model 
parameters to be  
estimated directly.

Pathway indicator variables
Various types of information 
that can be used as predictor 
variables in the higher levels  
of a hierarchical model, 
specifically binary variables that 
indicate whether a particular 
gene or interaction has a role  
in a particular pathway.

Gene-set-enrichment analysis (GSEA)61 (BOX 5) 
tests whether disease-associated genes are significantly 
enriched for particular pathways. Although GSEA is 
widely used in the analysis of gene-expression data, 
methods for applying it in association studies have only 
recently been developed62–64 and have not yet been used 
for G×E studies.

Hierarchical models (BOX 5) extend traditional multiple 
regression methods for exploring main effects and inter-
actions in an epidemiological data set by regressing the 
first-level coefficients on external data65–67. External infor-
mation can include simple pathway indicator variables68, 
genomic annotation or pathway ontologies69, functional 
assays70, in silico predictions of function or evolutionary 
conservation71, or simulation of pathway kinetics72,73.

The GSEA and hierarchical modelling approaches 
can be thought of as ‘empirical’ because they use exter-
nal information only to guide the selection of terms 
to include in a model or to stabilize their estimation. 
These approaches do not fit strong mechanistic models 
directly — our understanding of the basic biology is too 
primitive — although there have been notable successes. 
Some of the earliest were stochastic models for multi-
stage carcinogenesis74,75, but they have not been applied 
to pathways involving specific genes. Other areas that 
have seen extensive mathematical modelling include 
the pharmacokinetics and pharmacodynamics of drug 
metabolism76, of exposure to toxic substances77,78 and 
of normal metabolism79,80. Although inter-individual 
variation in metabolic rate parameters has long been  
recognized, their genetic basis has only recently  
been incorporated into this kind of modelling81,82.

Use of biomarkers. Even when supplemented with exter-
nal information, the informativeness of epidemiological 
studies of chronic disease end points for the purpose  
of pathway analysis is limited by the dichotomous nature of 
the phenotype. The information content may be improved 
by obtaining biomarker data on some of the intermediate 
steps in the process. Ideally, biomarker specimens would 
be sampled longitudinally and before disease onset. This 
may be prohibitively expensive, so the two-phase case–
control design samples individuals from a cohort or  
case–control study based on disease, exposure and 
genotype information83. nested case–control studies in 
biobanks overcome the problem of reverse causation by 
using stored specimens and exposure information obtained 
at enrolment. Mendelian randomization84,85 provides another 
way to avoid reverse causation by using genes (which are 
not subject to this problem) as instrumental variables86 for 
the biomarker−disease relationship. In a randomized trial 
of oestrogen plus progestin, dai et al.87 used a two-phase 
design to assess interactions of treatment with thrombosis 
biomarkers. They found that interaction-effect estimates 
made by using their two-phase design were consider-
ably more precise than estimates made by using the 
case–control study alone or by using standard two-phase  
estimators that do not assume G–E independence.

mining Gwa data for G×e interactions
Although the approaches described above could be used 
in a genome-wide context, the enormous cost, computa-
tional burden, multiple comparisons penalty and general  
absence of prior knowledge about most SnPs pose 
additional complexities. For the main effects of genes, 

Box 4 | multifactor dimension reduction

The table shows my reanalysis — using the multifactor dimension reduction (MDR) technique — of grouped data from  
Le Marchand et al.44 on colorectal cancer in relation to two exposures, smoking and red meat, and the phenotypic markers 
of two genes, cytochrome P450 family 1, subfamily A, polypeptide 2 (CYP1A2) and N-acetyltransferase 2 (NAT2).

Data set cYP1A2 
activity

nAt2 acetylation cases/controls

non-smoker smoker

Rare or 
medium meat

Well-done 
meat

Rare or 
medium meat

Well-done 
meat

Training subset 
(nine-tenths of 
the samples)

≤ median Slow/intermediate 31/51* 15/11‡ 39/44* 12/19*

Rapid 15/23* 9/14* 25/30‡ 10/12‡

> median Slow/intermediate 32/46* 16/19‡ 16/23* 8/6‡

Rapid 51/58‡ 20/32* 9/21* 10/2‡

Testing subset 
(one-tenth of 
the samples)

≤ median Slow/intermediate 1/6* 3/1‡ 1/11* 1/3*

Rapid 1/3* 0/1* 2/5* 0/0

> median Slow/intermediate 0/7* 1/0‡ 0/5* 1/0‡

Rapid 10/12‡ 5/1‡ 2/0‡ 2/0‡

*Low-risk category. ‡High-risk category.

The proportion correctly classified in the testing subset by the rule derived from the training data for this realization 
is 58/85 (68.2%). Across 10 random training/testing subsets, however, the mean classification accuracy is only 49.7% 
(range 31.9−74.1%); this is no better than chance, due to the small numbers of subjects (12 cases, 2 controls) in the 
high-risk category. All possible models (combinations of genes and environmental factors) were explored using MDR, 
and only the main effect of smoking on colorectal cancer risk was found to be replicable.

R E V I E W S

nATURE REvIEWS | Genetics  AdvAnCE OnlInE PUBlICATIOn | 7

© 20  Macmillan Publishers Limited. All rights reserved10



Nature Reviews | Genetics

Pathway
covariates

Gene–gene
connections

First-level model 
for epidemiologic 
data in relation to 
genes, environment 
and interactions

Second-level 
model for 
relative risk 
coefficients in 
relation to 
prior covariates

E(β) cov(β)Pr(β = 0)

Relative risk
coefficients (β)

Disease (D)

Environmental exposures (E),
genes (G) and interactions

Ontology
A formal system for organizing 
knowledge, here used in the 
context of biological pathways 
as a means of synthesizing 
information about the function 
of genes and exposures  
and their joint roles in  
disease causation.

Reverse causation
A bias in the estimation of the 
causal effect of a biomarker on 
disease when biospecimens 
are obtained after diagnosis. 
The bias occurs because the 
disease or its treatment alters 
the underlying intermediate 
variable or the measurement 
of it.

Mendelian randomization
A technique for studying  
the relationship between  
a biomarker and disease 
indirectly by studying the 
relationship of each to a gene 
that influences the biomarker.

Instrumental variable
In statistics, a variable that can 
be used to predict the value of 
an explanatory variable that  
is measured with error. The 
instrumental variable thereby 
indirectly yields an unbiased 
estimate of the relationship of 
the explanatory variable with 
an outcome variable.

Multiple comparisons 
penalty
The higher degree of statistical 
significance that is required for 
a particular association to be 
considered noteworthy when 
many possible associations  
are analysed simultaneously. 
Several adjustment methods 
can take account of this penalty, 
the best known of which is the 
Bonferroni correction.

Bonferroni correction
A multiple comparisons 
adjustment for testing at a 
conventional significance level. 
It is based on multiplying the  
p value for a specific test by 
the total number of tests 
performed, and approximately 
controls the overall type I error 
rate (the probability of at least 
one false positive association) 
at the chosen significance  
level if the predictors  
are independent.

various design and analysis issues have been widely  
discussed88,89, so the remainder of this Review focuses 
on the use of GWA data for analysing G×E interactions. 
Two-stage genotyping designs and two-step analyses of 
a single-stage design (discussed below) could be applied 
to interaction studies (BOX 3). In contrast to the pathway-
based approaches in the previous section, these novel 
techniques are currently applicable to GWA data.

Two-stage genotyping design. The two-stage genotyping 
design90 has been extended to the GWA scale91–94 and 
used to discover main effects in many studies. The design 
is also attractive for GEWI studies, but requires choices 
about how to select the SnPs to be carried forward to the 
second stage based on promising main effects and inter-
actions. Any SnP for which the main effect or any of the 
G×E or G×G interaction tests attained the appropriately 
Bonferroni-corrected significance level would be chosen 
for inclusion in stage-two genotyping. To maximize the 
yield of true positives, knowledge of the distribution of 
the true effect sizes for each type would be required to 
ensure optimal selection of hits; however, reasonable 
bets on which hits to pursue can be made based on pre-
vious literature and calculation of the power to detect 
similar effects.

Two-step analysis approaches. A conventional two-
step analysis of G×G interactions in a single-stage GWA 
study restricts the search for interactions to gene pairs 
for which one or both members show a marginal asso-
ciation. It can be more powerful than an exhaustive scan 
for all possible pair-wise interactions but risks missing 

those with no or weak marginal effects8,95–97. In addition,  
scanning for higher-order (G×G×G…) interactions is 
computationally unfeasible without filtering based on 
main effects and/or lower-order interactions. Although 
this filtering approach could also be applied to G×E inter-
actions, it does not exploit the ability of the following  
two-step approaches to use different designs.

The case-only design is appealing for a GEWI study 
because it has greater power than the case–control 
design and because most GWA SnPs are unlikely to 
be correlated with environmental factors in the source 
population. nevertheless, some false positives due to 
G–E association may occur, and even if only a small 
proportion of all SnPs was associated, this could repre-
sent a high proportion of all reported G×E interactions. 
Because any scan for interactions is likely to have been 
accompanied by a main effects scan, controls are prob-
ably available anyway, so it would be wasteful not to use 
them. (The exception would be if public controls with no 
environmental data, or non-comparable data, were used 
for the main effects scan, combining case-only informa-
tion on G×E interactions with case–control information 
on genetic main effects98.) Two basic approaches have 
been suggested for taking advantage of controls to pro-
tect against false positives while exploiting the power 
advantage of the case–control design. Murcray et al.99 
introduced a two-step analysis of a single-stage GWA 
study (FIG. 1) in which G–E association is first tested in the  
combined case and control sample and then only  
the most significant SnPs are tested for G×E interaction 
using the standard case–control test. The second general 
approach is the use of empirical Bayes34 or Bayes model 

Box 5 | Pathway-based approaches for genome-wide association study analysis

Gene-set-enrichment analysis
This approach shifts the emphasis from the effects of 
individual SNPs to sets of genes known a priori to have 
related functions. First, each SNP is assigned to one or 
more genes, typically based on proximity, and a summary 
statistic for each gene is obtained (for example, the 
minimum p value for all SNPs assigned to it). Then genes 
are assigned to gene sets and the distribution of 
gene-specific summary statistics for each set is 
compared with its null distribution, typically using the 
Kolmogoroff–Smirnoff test. Permutation may be used to 
allow for the non-uniformity of the null distributions. 
This method seems to have been applied only to purely 
genetic analyses, but could be extended to the genes 
involved in gene–environment interactions.

Hierarchical models
This approach supplements a traditional epidemiologic 
analysis (for example, multiple logistic regression) with a 
second level in which the first-level regression coefficients are modelled in relation to a set of ‘prior covariates’ or 
information about connections between genes derived from external information, such as pathway or genomic 
databases (see the figure). This shifts the main focus of inference from the effects of specific exposures, genes or 
interactions to the effects of the pathways or other external predictors. It also provides more stable estimates of the 
individual risk factor effects by ‘borrowing strength’ from related risk factors. The first-level associations may 
comprise a mixture of null and non-null associations, with probability depending upon prior covariates. The prior 
means of the non-null effects are regressed on prior covariates, and their covariances can depend on a matrix of 
gene–gene connections. Rebbeck et al.18 provide a discussion of various sources of prior covariate information. 
cov(x,y), covariance between x and y; E(x), expectation of x; Pr(x), probability of x.
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averaging35 methods that combine the case-only and 
case–control estimators to provide a reasonable trade-
off between validity and efficiency. Simulation studies 
show that these approaches can have better power than 
the two-step analysis over a range of modest interaction-
relative risks, whereas the two-step approach is more 
powerful for larger interaction-relative risks.

DNA pooling. Another possible approach for saving on 
genotyping costs is dnA pooling (BOX 3), at least for an 
initial screen, to be followed by individual genotyping of  
promising loci100. Beyond the technical challenges  
of forming comparable pools and assaying allelic con-
centrations, this approach would be feasible for studies 
of G×E interactions only if the pools were stratified on 
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Figure 1 | schematic representation of the two-step gene–environment-wide interaction test. Schematic 
representation of the two-step gene–environment-wide interaction (GEWI) test for gene–environment (G×E) 
interaction used by Murcray et al. (data from REF. 99). G

1
, G

2
, G

3
, and so on to G

M
 denote the genotypes at each SNP in a 

genome-wide association (GWA) study and E denotes a binary exposure variable. Association between gene and 
environment (G–E association) is tested in the combined case and control sample, and only the most significant SNPs 
are then tested for G×E interaction using the standard case–control test (in this example, the second and fourth rows are 
taken forward to the second step). Despite the dilution of the induced G–E association in the first step by the inclusion 
of the controls, this approach yields a second-step test that is independent of the first and therefore only needs to be 
corrected for the number of SNPs that are actually taken forward to the second step. They showed that  
the resulting procedure has dramatically better power than a conventional single-step case–control comparison. The 
optimal design depends only weakly on the true model parameters. For rare diseases with a 1:1 ratio, any first-stage 
significance level of α

1
 ~ 0.0001 yields roughly similar power, although a common disease would require a much larger α

1
. 

When this test was applied to data from the Southern California Children’s Health Study for asthma, 15,006 SNPs that 
attained an optimized first-step threshold of α

1
 = 0.025 were identified in the first-stage test of association between 

SNPs and in utero tobacco smoke exposure in the combined case–control sample. When the second-stage case–control 
test was carried out on these SNPs, one nearly significant interaction (the second example in the figure) was found that 
would not have achieved genome-wide significance in a traditional one-step test, or been deemed significant by its 
main effect. This SNP shows no effect in the absence of in utero tobacco exposure and exposure shows no effect in 
non-carriers of the minor allele. The first row shows the most significant SNP×E interaction in a conventional 
single-stage test; in the two-step procedure, this SNP fails the first step and hence is declared not significant.  
The fourth row shows the most significant SNP−E association in the first step, which shows no sign of SNP×E 
interaction in the second step. (The marginal totals differ slightly from row to row because of missing genotypes.)

R E V I E W S

nATURE REvIEWS | Genetics  AdvAnCE OnlInE PUBlICATIOn | 9

© 20  Macmillan Publishers Limited. All rights reserved10



DNA bar-coding
The addition of a unique 
molecular tag to each fragment 
of an individual’s DNA so that 
after pooling with other DNA 
samples, the genotype of each 
individual in the pool can  
be reconstructed.

Coherence
The extent to which the data  
at hand is concordant with 
other types of biological 
knowledge, thereby reinforcing 
a causal interpretation.

False discovery rate
This controls the proportion  
of all reported positive 
associations that are expected 
to be false positives, and can be 
used to judge which of many 
associations are noteworthy.

Bayesian network analysis
A technique for developing  
a minimal graphical 
representation of the 
connections among a large set 
of variables by examining the 
conditional independence 
relationships among pairs  
of variables given the other 
variables connected to them 
within the graph. This 
technique has been widely 
used for the analysis of gene 
co-expression data.

Challenge studies
Various experimental designs 
for assessing the effects of a 
noxious agent by exposing 
individuals to trace amounts  
in a controlled setting (as in a 
randomized or crossover trial). 
For gene–environment 
interaction studies, the effects 
can be compared across 
subgroups with different 
genotypes, and the efficiency 
can be improved by stratified 
sampling based on genotype.

the basis of exposure, therefore limiting the number of 
possible environmental factors that could be considered. 
Recent advances in DNA bar-coding101, however, would 
permit the reconstruction of individual genotypes from 
within pools102, thereby allowing a broader range of 
interaction analyses.

Prioritization of hits to pursue. One must sift through 
a massive number of potential ‘hits’ to decide which 
should be considered in independent replication stud-
ies, functional assays or subsequent stages of a multistage 
genotyping design. This decision is usually based on 
statistical significance, but also entails expert judgment 
based on the internal consistency of the results and the 
coherence with other knowledge (for example, the exist-
ence of other GWA associations for the same or related 
traits or biological pathways). Coherence has tended 
to be a more informal judgment, but various methods 
have emerged for formalizing this process. The follow-
ing techniques can be viewed as well established and 
available for application now, although because of their 
novelty, there are few applications so far. See REF. 103 for 
an excellent review of the available techniques in the 
context of genetic main effects.

One of the first prioritization techniques was a 
weighted false discovery rate (FdR) approach104. This 
approach uses external information to prioritize 
some SnPs or regions while maintaining a fixed over-
all FdR. Bayesian versions of the FdR have also been 
described105,106, as well as the use of Bayes factors107 and 
empirical Bayes shrinkage108. GSEA and hierarchical 
modelling approaches are also amenable to incorpo-
rating external knowledge. Several authors109–111 have 
described applications of the hierarchical Bayes mod-
elling approach for GWA data using prior covariates 
extracted from genomic or pathway ontologies. Although 
these have focused on main effects, the methods are also 
applicable to GEWI studies11, the limiting factor pres-
ently being the lack of suitable ontologies for interaction 
effects. Meanwhile, various ways of using GSEA or other 
methods of integrating pathway knowledge into GWA 
analyses are being discussed9,62–64,112–116. Few studies have 
explicitly included G×E interactions in formal pathway-
based analyses of GWA data117. A promising approach 
entails incorporating metabolomics, as in the first GWA 
study of a large panel of metabolite phenotypes118. The 
authors identified associations between four enzyme-
encoding genes and ratios of metabolite concentra-
tions. These metabolic profiles were consistent with the  
pathways in which these enzymes are known to act.

Methods for discovering novel pathways. An emerging 
idea is to use Bayesian network analysis119–121 or similar tech-
niques to discover novel pathways. Bayesian networks have 
been widely used in the analysis of gene co-expression 
data to discover cliques of interacting loci. The starting 
point is usually a matrix of gene–gene correlations across 
multiple experimental conditions (for example, time series 
of synchronized cell cultures or different environmental 
stressors), which can be used to derive a parsimonious 
graphical representation of the important interactions. 

Unlike co-expression data, GWA data provide only a sin-
gle estimate of the association between genotype and phe-
notype, but no information about gene–gene connections. 
G×G interaction analyses do, however, yield information 
about pairs of genes that could be mined in a similar way, 
as could G×E interactions. Sebastiani et al.10 applied the 
technique to modelling the posterior probability of geno-
types and exposures according to disease status, yielding 
graphical models that can be interpreted in terms of inter-
actions. However, these probabilities depend on both the 
risk of disease given G and E (and their interactions) and 
the correlations among these factors, so they do not rep-
resent a pure interactome model122. Alternatively, a known 
network can be used as a prior covariance matrix for main 
effects or to provide prior covariates for interactions in a 
hierarchical model (BOX 5). Although potentially exciting, 
such methods have yet to be applied on a GWA scale.

experimental validation of G×e interactions
Experimental studies offer unique promise for validating  
G×E interactions, as both exposure and genotypes can 
be carefully controlled through randomization. Model 
organisms are commonly used for evaluating genetic 
modifiers of drug response; for example, Koch and 
Britton123 used selective breeding of rats on aerobic 
capacity to study gene–diet interactions in combination 
with body weight and various metabolic markers. In 
human challenge studies, a randomized crossover design 
is typically used, in which volunteers are exposed to one 
or more environmental exposures in random order. In 
one intra-nasal challenge study of allergen alone or with  
diesel exhaust particles, various immunological responses 
were measured124. Stratified analyses revealed that those 
with the GSTM1-null or glutathione S-transferase pi 1 
(GSTP1) I/I genotypes had significantly larger increases 
in immunoglobulin E and histamine levels after diesel 
challenge. Subjects were not pre-selected on the basis of 
genotype, so results were limited by the relatively small 
numbers of subjects with the susceptible genotypes. 
Challenge studies nested within epidemiologic cohorts 
for which genotypes (and possibly various outcomes) are 
already available could be more powerful.

Clinical trials also allow controlled comparisons for 
G×E interactions and more powerful designs using two-
phase sampling on various combinations of genotype, 
treatment, outcomes and possibly other factors93,125. For 
example, Israel et al.126 performed a clinical trial of albuteral 
in asthmatics, matching pairs on forced expiratory vol-
ume and adrenergic β2 receptor (B2AR, also known 
as ADRB2) genotypes, and found a highly significant 
gene × treatment interaction. A case-only design nested 
within a clinical trial is particularly appealing for evaluat-
ing gene–treatment interactions on survival or other treat-
ment responses, as treatment assignment is independent 
of genotype by virtue of randomization127,128.

needs for further progress
Better ontologies. The biggest barrier to integrating 
biological knowledge with agnostic GEWI studies data 
may be the lack of ontologies designed to bring together 
information from SnPs, genes and pathways, but also 
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Latent variable models
A model involving one or more 
unobservable intermediate 
variables that represent the 
pathway connecting a cause 
(for example, exposures and 
genotypes) to an effect (for 
example, disease). Identifying 
the pathways typically  
requires the use of surrogates 
for the latent variables (for 
example, biomarkers) in 
addition to the observable 
cause and effect variables.

1000 Genomes Project
A large-scale effort to obtain 
and catalogue the full 
genome-wide DNA sequence 
of 1,000 individuals selected 
from a range of races.

their relevant environmental substrates, known relation-
ships to disease, metabolic parameters and toxicological 
information. The creation of such a database is arguably 
one of the most important contributions of the Human 
Genome Epidemiology network (HuGEnet) project129, 
but is highly labour-intensive because expert curation 
of the literature is needed. HuGEnet’s valuable series of 
reviews on specific topics130,131 does not replace the need 
for a searchable database that could provide prior covari-
ate information in a systematic and unbiased manner. 
Automatic literature-mining approaches132,133 have been 
developed that can help to assign sets of genes to shared 
pathways or interaction networks. However, they are still 
vulnerable to bias in what is investigated and published; 
the current literature on G×E interactions is very sparse, 
highly subject to publication bias, poorly replicated and 
tends to reflect a ‘looking under the lamp post’ men-
tality in terms of what gets studied. Other genomic or 
pathway ontologies134–136 tend to be limited to purely 
genetic information and are only partially useful for 
G×E modelling.

Environmental pathways mediated through epigenetics 
and other mechanisms. One of the aims of pathway-based 
modelling is to understand how genetic and environmental 
effects are mediated through intermediate events, such as  
changes in gene expression, epigenetic processes (such 
as dnA methylation)137, somatic mutations138 and inter-
ference by small RnAs139. These phenomena have been 
studied in relation to disease and to a lesser extent expo-
sure140,141, but the full pathways from genes and exposures 
through epigenetics to disease remain to be studied137. For 
example, the seminal observation142 that monozygotic 
twins start life with identical methylation patterns but 
subsequently diverge suggests the effect of environmen-
tal factors and may provide a mechanism for their subse-
quent discordance in disease. Latent variable models could 
be used to treat biomarker measurements as surrogate 
observations of a long-term unobserved process leading 
to disease. various omics technologies could provide high-
dimensional measurements of intermediate processes on 
targeted subsamples of epidemiologic study subjects. 
However, the multiple comparisons challenges of relat-
ing high-dimensional phenotypes to high-dimensional 
genotypes and interactions are even more daunting than 
for regular GWA studies. Alternatively, stand-alone stud-
ies or external databases can be used to construct prior 
covariates to inform G×E analyses of epidemiologic stud-
ies. For example, GWA data on immunologic markers for 
a challenge study of allergen and diesel exhaust particles 
are being used to define a set of immunologic covariates 
associated with each SnP as priors in a hierarchical model 
for a GWA study of asthma. Associations of genome-wide 
expression with genome-wide SnPs143 could be used in a 
similar manner, and could be even more promising for 
G×E interactions if based on expression studies conducted 
under a range of environmental conditions.

Next-generation sequencing and rare variants in a G×E 
context. Increasing attention is being paid to the possi-
bility that rare variants might account for at least some of 

the missing heritability144. next-generation sequencing 
methods are making it feasible to sequence portions of 
the genome identified through a GWA study in a sub-
set of study subjects. Until it becomes possible to obtain 
and manage genome-wide sequence information on the 
massive sample sizes that would be required to discover 
associations with rare variants directly, some form of 
informative sampling will be required. For example, 
one might sequence a subsample of cases and controls 
— stratified by associated SnPs in a given region, family 
history and environmental factors — to discover novel 
variants in the region, and a joint analysis could be car-
ried out on the subsample and the main study data94,145. 
The imminent availability of the 1000 Genomes Project146 
data will doubtless have a profound effect on the design 
of such studies.

Public health and personal medicine implications. 
Insights from G×E interactions could have important 
policy implications for environmental health standards147,  
the targeting of interventions148 and treatment selection149  
(BOX 2). For example, the Clean Air Act directs the US 
Environmental Protection Agency to set standards to 
protect the most sensitive, including genetically sus-
ceptible individuals150, although it has been argued that 
public health interventions aimed at the whole popu-
lation may be more effective151. As another example, 
suppose the joint effect of mutations in BRCA1 and/or 
BRCA2 in combination with RT in an individual was 
multiplicative; then even if the radiation effect in muta-
tion carriers alone was not statistically significant or the 
joint effect was not significantly greater than additive, it 
would be misleading to conclude that RT was no more 
dangerous for carriers than for non-carriers, as carriers 
have a much higher baseline risk152. Because any state-
ment about interaction is necessarily scale dependent 
(BOX 1), it is essential that claims about the presence 
or absence of an interaction make clear whether it is a 
departure from an additive or multiplicative model on 
a scale of absolute or attributable risk, odds, underly-
ing liability or some other scale that is being discussed. 
Unfortunately, the translation of scientific understand-
ing about G×E interactions into risk assessment and  
prevention policies has so far been limited153.

conclusions
The current enthusiasm for studying genetic associa-
tions with disease, recently enhanced by the advent of 
GWA studies, has tended to overshadow the important 
role of environmental factors and G×E interactions. 
Although these are much more difficult to study than 
purely genetic associations due to the need for careful 
collection of exposure data and rigorous study designs, 
standard epidemiologic designs can be used, and several 
recently developed variants of them can enhance power. 
nevertheless, large consortia are likely to be needed to 
fully explore G×E interactions, and such efforts will need 
to consider these principles and harmonization across 
studies. The use of powerful pathway-based methods 
that leverage external biological knowledge can further 
enhance power and insights.
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